PMT

Mark Scheme (Results) January 2010

GCE

GCE Chemistry (6CH02/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Examiners' Report that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

January 2010 Publications Code US022678

All the material in this publication is copyright $\ensuremath{^{\odot}}$ Edexcel Ltd 2010

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is essential to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

 \bullet select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

6CH02/01

Section A

Question Number	Correct Answer	Reject	Mark
1	С		1
			1
Question Number	Correct Answer	Reject	Mark
2	A		1
Question Number	Correct Answer	Reject	Mark
3	D		1
-			
Question Number	Correct Answer	Reject	Mark
4	D		1
			1
Question Number	Correct Answer	Reject	Mark
5	A		1
Question Number	Correct Answer	Reject	Mark
6	В		1
			ł
Question Number	Correct Answer	Reject	Mark
7	С		1
			ł
Question Number	Correct Answer	Reject	Mark
8	В		1
			ł
Question Number	Correct Answer	Reject	Mark
9(a)	A		1
Question Number	Correct Answer	Reject	Mark
9(b)	С		1
		1	I
Question Number	Correct Answer	Reject	Mark
10(a)	A		1
- \/		1	I -
Question	Correct Answer	Reject	Mark
Number			
10(b)	D		1

Question	Correct Answer	Reject	Mark
Number			
11	A		1

Question Number	Correct Answer	Reject	Mark
12	C		1

Question Number	Correct Answer	Reject	Mark
13(a)	D		1

Question Number	Correct Answer	Reject	Mark
13(b)	В		1

Question Number	Correct Answer	Reject	Mark
13(c)	С		1

Question Number	Correct Answer	Reject	Mark
14	В		1

Question Number	Correct Answer	Reject	Mark
15 (a)	В		1

Question Number	Correct Answer	Reject	Mark
15 (b)	С		1

Section B

Question	Acceptable Answers	Reject	Mark
Number			
16(a)(i)	$2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$		2
	Correct formulae (1)		
	Balancing (1)		
	ALLOW multiples or equation divided by 2		
	Second mark on correct species only		
	Ignore state symbols even if incorrect		
	ALLOW		
	N_2O_4		
	Extra oxygen molecules on both sides in a		
	balanced equation		

Question Number	Acceptable Answers	Reject	Mark
16(a)(ii)	Stand alone marks Mg ²⁺ / Magnesium ion smaller or fewer electron shells / greater charge density (1) OR Magnesium ion has same charge (as calcium ion) but is smaller (1) Causes more polarisation /distortion of nitrate / anion (electron clouds) / N–O (bond)(1) OR MgO produced has stronger lattice (1) OR production of MgO is more exothermic (1) OR reverse argument based on Ca ²⁺	Magnesium / calcium / atoms / molecules	2

Question Number	Acceptable Answers	Reject	Mark
16(b)	$2NaNO_3 \rightarrow 2NaNO_2 + O_2$ ALLOW multiples or equation divided by 2 Ignore state symbols even if incorrect ALLOW Extra oxygen molecules on both sides in a balanced equation		1

Question Number	Acceptable Answers	Reject	Mark
16(c)	No as double bond would be shorter (than single bond) / shorter than dative (covalent) bond. ALLOW Structure has double and single bonds (between N and O) Double and single bonds have different lengths	Implication that the single covalent and dative covalent bonds have different lengths	1

Question	Acceptable Answers	Reject	Mark
Number			
16(d)(i)	Mark independently Goes darker (brown) (1) ALLOW Goes browner Ignore comments on mixture first becoming paler if volume increases Equilibrium moves in the endothermic direction (1) OR Equilibrium moves left as forward reaction is exothermic (1) For second mark ALLOW Equilibrium moves left to counteract addition of heat / increase in temperature(1)	Brown (gas evolved)	2
	Reaction removes added heat by moving left (1)		

Question	Acceptable Answers	Reject	Mark
Number			
16(d)(ii)	Equilibrium moves right (ALLOW forwards) (so NO ₂ concentration decreases) (1) OR Reaction reduces pressure (1) As fewer moles / molecules(ALLOW particles) (of gas) on RHS (1) Stand alone marks		2

Question Number	Acceptable Answers	Reject	Mark
16(e)	At T_2 more molecules/collisions have energy greater than (or equal to) E_A (1)		2
	This can be shown on the diagram by indicating areas to right of vertical line		
	Energy must be at least E_A for successful collision / for reaction (1)		
	OR So more collisions have sufficient energy to react(1)		
	Ignore references to the average energy and speed of the molecules		

Question	Acceptable Answers	Reject	Mark
Number			
17(a)(i)	A hydrocarbon (solvent) / volasil / named hydrocarbon solvent / tetrachloromethane Formulae	Ethanol Alkenes	1

Question	Acceptable Answers	Reject	Mark
Number			
17(a)(ii)	Red / brown /orange / amber / yellow		1
	Or any combination		
	No TE on incorrect / no reagent		

Question	Acceptable Answers	Reject	Mark
Number			
17(b)(i)	Oxidation number of S in H ₂ SO ₄ =(+)6 Oxidation number of S in SO ₂ =(+)4 (1) Oxidation number had decreased (1) ALLOW S has gained electrons for second mark Second mark stands alone provided oxidation numbers have decreased, even if calculated wrongly	Just 'S has gained electrons' without calculating oxidation numbers	2

Question Number	Acceptable Answers	Reject	Mark
17(b)(ii)	Black / (shiny) grey solid (1) Purple / violet / pink vapour / fumes (1) Smell of (bad) eggs (1) Yellow solid (1) ALLOW Brown liquid (1) Any two	Purple solid	2

Question Number	Acceptable Answers	Reject	Mark
17(b)(iii)	Oxidation number of S has reduced more / to -2 (in H_2S) (1) OR Oxidation number of S is lower in H_2S (than in SO_2) If ON of S in H_2S is calculated it must be correct		1

Question Number	Acceptable Answers	Reject	Mark
17(c)	People can choose whether to take extra fluoride ALLOW Fluoride is not released into the environment	Fluoride can be monitored	1

Question	Acceptable Answers	Reject	Mark
Number			
18(a)(i)	Effervescence / fizzing / bubbles (of colourless gas) (1) Mixture gets hot (1) White solid (ALLOW ppt) produced / sodium dissolves or disappears (1) Any two Ignore inferences unless incorrect		2

Question Number	Acceptable Answers	Reject	Mark
18(a)(ii)	$C_4H_9ONa / C_4H_9O^-Na^+$ /structural or displayed formulae of any of the isomers: $CH_3CH_2CH_2CH_2ONa$ $(CH_3)_2CHCH_2ONa$ $(CH_3)_3CONa$ $CH_3CH(ONa)CH_2CH_3$	Structures showing a covalent bond between O and Na C ₄ H ₉ NaO / C ₄ H ₉ Na ⁺ O ⁻	1

Question Number	Acceptable Answers	Reject	Mark
18(b)	H H H C H H H H C H H H H H Do not penalise undisplayed CH_3 or O-H (1) (2-)methylpropan-2-ol(1) Marks are stand alone	Missing hydrogen atoms Skeletal formula	2

Question	Acceptable Answers	Reject	Mark
Number			
18(c)	(CH ₃) ₂ CHCH ₂ OH	Missing hydrogen	1
	OR	atoms	
	correct displayed formula	Skeletal formula	
	OR		
	semi-displayed formula		
	ALLOW		
	CH ₃ CH(CH ₃)CH ₂ OH		
	ALLOW missing bracket round CH ₃ in this		
	version		
	Ignore names		

Question	Acceptable Answers	Reject	Mark
Number			
18(d)(i)	CH ₃ CH ₂ CH(OH)CH ₃ (1) OR correct displayed formula OR semi-displayed formula Do not penalise missing bracket round OH Ignore names	Missing hydrogen atoms Skeletal formula	1

Question Number	Acceptable Answers	Reject	Mark
18(d)(ii)	O—H absorption / peak in 2-methylpropanoic acid / No O—H absorption / peak in Q ALLOW C—O absorption / peak in 2-methylpropanoic acid / No C—O absorption / peak in Q Ignore references to broad or sharp peaks and to the fingerprint region		1

Question Number	Acceptable Answers	Reject	Mark
18(e)	PCl ₅ / PCl ₃ / conc HCl / SOCl ₂ / mixture of NaCl + H ₂ SO ₄ / mixture of KCl + H ₂ SO ₄ Ignore reference to concentration of H ₂ SO ₄ OR Names	Hydrogen chloride Conc hydrogen chloride HCI PCI ₅ (aq), PCI ₃ (aq), SOCI ₂ (aq)	1

Question Number	Correct Answer	Reject	Mark
18(f)(i)	White precipitate/ white solid		1

Question Number	Acceptable Answers	Reject	Mark
18(f)(ii) QWC	Water has 2 hydrogen bonds per molecule (on average) whereas ethanol only has 1 (1) ALLOW Water has more hydrogen bonds (per molecule) than ethanol Needs more energy to break H bonds in water (so less soluble) / H bonding (ALLOW intermolecular forces) stronger in water (1) Second mark dependent on first. Ignore references to London, dispersion and van der Waals forces		2

Question	Acceptable Answers	Reject	Mark
Number			
19(a)	Starch (solution)		1

Question Number	Acceptable Answers	Reject	Mark
19(b)(i)	I ₂ at start = 1 x 10 ⁻³ / 0.001 (mol)		1

Question Number	Acceptable Answers	Reject	Mark
19(b)(ii)	1.26 x 10^{-3} (mol) thiosulfate (1) 6.3(0) x 10^{-4} / 0.00063 (mol) I_2 (1) Correct answer with no working (2) Ignore SF except 1 SF		2

Question Number	Acceptable Answers	Reject	Mark
19(b)(iii)	$I_2 \text{ used} = (1 \times 10^{-3} - 6.30 \times 10^{-4}) = 3.70 \times 10^{-4}$ (mol) (1) Mol SO ₂ = mol I ₂ = 3.70 x 10 ⁻⁴ / 0.00037 (mol) (1) Correct answer with no working (1) ALLOW TE from (i) and (ii) Ignore SF except 1 SF		2

Question Number	Acceptable Answers	Reject	Mark
19(b)(iv)	Mass SO ₂ in 100 m ³ =(64.1 x 3.70×10^{-4}) (1) Mass SO ₂ in 1 m ³ = 64.1 x 3.70×10^{-4} /100 = 237(.2) x 10 ⁻⁶ g = 2.37 x 10 ⁻⁴ g (1) (= 237.2 / 237 / 240 µg) units required (\therefore within limit) Allow TE from (iii) Ignore SF except 1 SF		2

Question	Acceptable Answers	Reject	Mark
Number			
19(c)(i)	Improved because titration may be repeated /averages could be taken ALLOW Smaller titration reading so greater (%) error		1

Question	Acceptable Answers	Reject	Mark
Number			
19(c)(ii)	Larger titration reading (1) So smaller (%)error in titration reading (1) OR Smaller mass of sodium thiosulfate used to make solution (1) So greater %) error in the mass measurement (1) Second mark dependent on correct first or near		2
	miss		
Question Number	Acceptable Answers	Reject	Mark
19(c)(iii)	Smaller titration reading as more I ₂ reacts/ less I ₂ left (1) So greater (%) error in titration reading (1) Second mark dependent on correct first or near miss) OR Smaller (%) error in measuring volume of air (1)		2

Section C

Question	Acceptable Answers	Reject	Mark
Number			
20(a)	(Strong) covalent bonds between atoms within		2
QWC	the layers / good overlap of electron orbitals in		
	layers (1)		
	(Weak) London / dispersion / induced dipole-	Intermolecular forces	
	induced dipole (ALLOW van der Waals) forces	alone	
	between layers (1)		

Question	Acceptable Answers	Reject	Mark
Number			
20(b)	Within a layer, one electron per carbon is		2
	(ALLOW electrons are) delocalized (so electrons		
	can move easily along layers) (1)	Electrons between	
	Energy gap (ALLOW distance) between layers is	layers not	
	too large for (easy) electron transfer (1)	delocalized	

Question Number	Acceptable Answers	Reject	Mark
20(c)	N has one more (outer shell) electron than C(1) Would increase number of (delocalised) electrons contributing to the London / dispersion (ALLOW van der Waals) forces (1) OR holding layers together (1)	Just London / dispersion / van der Waals) forces stronger	2

Question Number	Acceptable Answers	Reject	Mark
20(d)	No heat energy required / low energy requirement / high temperatures not needed / sunlight (which is renewable) could be used Ignore generalisations such as 'greener', 'environmentally friendly' 'smaller carbon footprint' cheaper or fossil fuels not used.		1

Question Number	Acceptable Answers	Reject	Mark
20 (e)	CO + $2H_2 \rightarrow CH_3OH$ OR Structural and displayed formulae ALLOW CH ₄ O for CH ₃ OH		1

	PMT

Question Number	Acceptable Answers	Reject	Mark
Question Number 20 (f) QWC	 Acceptable Answers Score 1 mark for each clearly made point 1. Need energy to make benzene / catalyst / hydrogen 2. High energy / temperature / pressure needed for the reaction (ALLOW stated T or P) 3. Fossil fuel (oil or coal) used as source of energy, benzene or hydrogen 4. Hydrogen has to be manufactured 5. Hydrogen has to be stored 6. Fossil fuels non-renewable 7. Poduces CO in atmosphere / recycles CO 	Reject References to the ozone layer	Mark 6
	 Reduces CO₂ in atmosphere / recycles CO₂ CO₂, is a greenhouse gas / causes global warming CO toxic Benzene toxic / carcinogenic 11. 100% atom economy in making methanol Beneficial if phenol useful / not beneficial if phenol a waste product Ignore generalisations such as 'greener', 'smaller carbon footprint' or 'environmentally friendly'. 		

Question Number	Acceptable Answers	Reject	Mark
20 (g)	Delivering drugs to cells ALLOW Delivering drugs to specific / targeted parts of the body Catalyst with big surface area	Just drug delivery	1

PMT

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code US022678 January 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH